STAY GROUNDED

countering aviation – for a just transport system

Network Meeting - Fall 2020
THE REAL CLIMATE IMPACT OF AVIATION
1. Rename your profile with your name and organization (click on participants and rename yourself)

2. Keep mic muted if you don’t speak (use the chat function in case you experience difficulties during presentations)

3. Raise hands: Use the chat and make a star * if you want to speak

4. This meeting is being recorded and made available publicly - the recording starts now.
AGENDA OF THE WEBINAR

1. Non-CO$_2$ impacts: What are the latest figures and what do they mean? Eric Lombard - Rester sur Terre (SG France)

2. Mitigating the climate forcing of contrails. Marc Stettler - Imperial College London

3. What should regulators do?
 Bill Hemmings - Aviation consultant (Rosetta advisory services Brussels)

4. Discussion
Non-CO_2 impacts of aviation
What are they and how much is it?

Total aviation-caused climate heating is 3 times that of CO_2 alone
1. Produced by the combustion of kerosene in reactors: 1 Gt/yr
2. Produced in upstream operations (Well to tank): 0.2 Gt/yr
3. Total contribution of aviation: 2.9% of all human-caused CO₂
4. Long-lived: accumulates in the atmosphere. Still 30% after 100 years
NOx derivatives

1. NOx (nitrogen oxides) are not greenhouse gases (not to be confused with nitrous oxide, N₂O, a powerful GHG).

2. But they react in the upper atmosphere and:
 - produce ozone (O₃), a GHG, lifespan = 1 mo (heating effect)
 - destroy methane (CH₄), a GHG, lifespan = 12 yr (cooling effect)

3. Overall heating effect
Contrails and contrail cirrus

1. Water vapor + soot + cold / humidity \rightarrow Contrails (ice crystals)
 Life-span = 1 h

2. Contrails sometimes \rightarrow Contrail cirrus. Life-span = 1 day

3. Contrail cirrus forcing dominates that of persistent linear contrails (90/10)

4. Cooling in the day, heating at night. Overall heating effect

5. Very few flights account for most of the energy forcing (2% of flights account for 80% of the EF in Marc Stettler’s study in Japan).
Contribution of aviation to climate heating
How much?

What are we talking about? Two ways of dealing with the question:

1. How much has aviation already contributed to the currently observed heating (about 1°C)?

2. How much do emissions of aviation contribute to additional heating caused by overall human ongoing activity (in a year for instance)?
1. Historical contribution of aviation

To date#, the radiative forcing of aviation is responsible for 3.5% of the observed heating.

It is the result of:
- CO₂ accumulated since the beginning of aviation: $\frac{1}{3} = 1.2\%$
- Short-lived non-CO₂ that constantly appear and vanish, as long as there are planes in the sky: $\frac{2}{3} = 2.3\%$

2011 data (Lee et al 2020)
Today\#, aviation emissions account for 5.9% of all human-caused additional heating.

It is the combination of:
- CO$_2$ emissions from oil well through flights = 1 + 0.2 Gt CO$_2$/yr
- non-CO$_2$ emissions = 2.1 Gt CO$_2$e*/yr

Total: 3.3 Gt CO$_2$e*/yr (over 56.1 Gt CO$_2$e*/yr)

\# 2018 data (Lee et al 2020)
Key figures

Total aviation-caused climate heating is 3 times that of CO₂ alone

Since 1940 aviation has contributed 3.5% of all human-caused global heating

Cumulative emissions (100%)

Ongoing emissions (100%)

Aviation emissions currently account for 5.9% of all human-caused global heating (2018 data)
“Aviation has already contributed 3.5% to the currently observed heating”, is what has been retained from Lee’s recent article. It’s the result of past air traffic.

What’s important for the future is what we are doing now! And today (before Covid), aviation emissions account for 5.9% of all human-caused additional heating. It’s what we must all say!

Multiply CO₂ by 3 is valid for the past as well as for the present.
GWP*: a new approach for calculating CO₂ equivalent of short-lived species

Let’s think of radiative forcing as blankets that keep the earth warm!

For short-lived blankets like contrail cirrus:
- if air traffic is constant, the thickness remains constant: there as many contrail cirrus being formed as disappearing
- If air traffic grows, the thickness of the blanket increases
- If air traffic decreases, the thickness decreases.

►► Adding some CO₂eq. for contrail cirrus and other non-CO₂ emissions is only necessary if traffic grows.
Why use GWP* rather than GWP or GTP?

GWP* first proposed for methane, now extended to very short-lived emissions of aviation.

Using GWP*:
- preserves the link between emissions and warming/cooling of the atmosphere
- is less dependent on time horizon.

<table>
<thead>
<tr>
<th>Aviation</th>
<th>GWP$_{20}$</th>
<th>GWP$_{50}$</th>
<th>GWP$_{100}$</th>
<th>GWP*$_{20-100}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tot CO$_2$-e / CO$_2$</td>
<td>4.0</td>
<td>2.3</td>
<td>1.7</td>
<td>3.0 (Multiplier)</td>
</tr>
</tbody>
</table>
GWP*: a change in the way of thinking

From: adding a non-CO\(_2\) burden, proportional to CO\(_2\) emissions, to every flight

To: adding a non-CO\(_2\) burden, proportional to traffic growth, to aviation as a whole

Outcome:
- 1 Gt CO\(_2\) for every 1 mW/m\(^2\) incremental Effective radiative forcing (increased blanket thickness).
- For the last 18 years, average increase of non-CO\(_2\) ERF = 2 mW/m\(^2\)/yr
- non-CO\(_2\) burden = 2.1 Gt CO2-e*/yr

\[
1 \text{ Gt CO}_2 + 2.1 \text{ Gt CO}_2\text{-e*} = 3.1 \text{ CO}_2\text{-e*} \quad (2018, \text{ without Well to Tank})
\]
A new argument for degrowing aviation

Degrowing aviation reduces the thickness of the non-CO\textsubscript{2} blanket

- It’s equivalent to CO\textsubscript{2} negative emissions (withdrawing CO\textsubscript{2} from the atmosphere)
- It has an immediate effect

Potential: 67 Gt CO\textsubscript{2}-e
(about twice the emissions of aviation since 1940 or 1.6 times the annual worldwide emissions of CO\textsubscript{2})
IT’S ABOUT MORE THAN JUST CO₂

Aviation’s climate impact is 3x that of its CO₂ alone

In 2018, it caused 5.9% of global emissions

Cutting air traffic reduces emissions immediately

Mitigation is possible, but resisted

1. Account for CO₂ AND non-CO₂ emissions
2. Take measures to reduce ALL impacts
3. Apply operational and technological improvements
4. Keep air traffic low
Mitigating the climate forcing of contrails

Non-CO$_2$ impacts: mitigating the climate forcing of contrails

- Roger Teoh, Marc Stettler, Center for Transport Studies, Imperial College, London
- Ulrich Schumann, DLR (German Centre for Air and Space Travel)
Flight diversion over Japan: Key results

- 18% of flights forming contrails
- Maximum warming between 3 pm and 6 am. Cooling may occur in daytime
- 2.2% of flights generating 80% of the Energy forcing (EF)

Small change in flight altitude (+/- 2000 ft) of 1.7% of flights:
- Reduction of $\text{EF}_{\text{Contrail}}$: - 59%
- Reduction of EF_{Total}: - 36%
- CO_2 penalty: + 0.01% for the fleet
Mean 2006 net-contrail Radiative forcing from Aqua MODIS data